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INTRODUCTION i/ |

It is well known that the underlying mathematical formulations in systems theory and
signal processing are quite similar [1,2]. In particular, the transfer function H{-) with
the sequence of unit impulse responses {hyn}, plays the central role of these two important | - \
areas of research. In the ideal situation when the sequence {h,} is noise-free, then it isvery \ , =
easy to obtain the rational function model H (z? One method is the use of Padé approxi- e
mants. This method, being linear, is particularly simple. In systems theory, however, the
dimension of the system, which agrees with the degree of the denominator of the rational
function H(z), although finite, may be unreasonably high. Hence, many model reduction
methods have been introcuced in the literature. All these methods amount to approxima-
tion of the rational function H(z) by another rational functic:: with a much lower . sgree
(or lower system dimension). However, only one method stauds out to be the mos. desir-
able. This method, known as optimal Hankel-norm approzimation, has three outstanding
features: first, the lower-degree rational function approximant is uniquely determined by
an optimal criterion; second, this rational function approximant is guaranteed to be sta-
ble; and third, the exact measurement of the error of approximation can be determined.
The mathematical description and derivation of the optimal Hankel-norm approximation
is especially intriguing. Based on the infinite-dimensional theory due to Adamjan, Arov,
and Krein [3], better known as AAK, it relates best rational approximation in the supre-
mum norm and optimal approximation of the corresponding Hankel operator by Hankel
operators with specified finite rank. The intimate relation between rational functions and
finite-rank Hankel operators is governed by the beautiful classical result due to Kronecker
(cf. Ref. 4); and the relation between best rational approximation in the supremum norm
and optimal Hankel approximation in the operator norm is initiated by a fundamental re-
sult due to Nehari [5]. The AAK theory may be considered as a generalization of Nehari’s
theorem in that the singular values are used to give the exact measurement of the error of
approximation. Note that the first singular value agrees with the spectral radius, which is
the same as the distance in the supremum norm of the transfer function from the Hardy
space H* of bounded analytic functions in the open unit disc. This is the main theorem
due to Nehari.

Unfortunately, the AAK theory is very deep, and there seems to be no easy way
to find the AAK optimal approximants. Nevertheless, when the transfer function is al-
ready a rational function, S.Y. Kung [6] gave an algorithm to compute the AAK optimal
approximation. This method is called H®-control (or systems reduction via Hankel ap-
proximation) in systems theory. However, even in the absence of noise, impulse response
data from underwater acoustic transducers do not yield a rational model; and in general,
data obtained from a rational model are contaminated with noise. Hence, for all practical
purposes, the transfer function to be identified is not in the form of a rational function, and
a rational approximation criterion is necessary. Recently, Chui, Li, and Ward [7,8] proved
that if the truncated Hankel operators are used in place of the original Hankel operator
(which represents the transfer function to be identified), then the AAK approximants of
the truncated operators converge to the AAK approximant of the desired transfer func-
tion. We will derive a computational procedure based on this convergent result. In other
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words, if a sequence {h,} of unit impulse responses is given, we will derive a ccmputational
scheme to find the stable ratioual models that are optimal in the sense of best Hankel-norm
approximation.

KRONECKER’S THEOREM

Let {hn}, n=0,1,..., be a causal sequence of unit impulse responses. Corresponding
to this sequence, we associate two quantities: the z-transform, or symbol,

H(z)=)Y hnz™", (1)

n=0

and ihe infinite Hankel matrix Ty = [hit¢-1], 1 <4, < o0, or

by by b
T'u=1ho h3 2 . (2)
hs )

Note that we do not include h¢ in the definition of I'y in (2) simply because of the standard
convention in systems theory. The constant hg is easy to determine since it is the limit of
H(z) as z tends to infinity.

The rank of the mairix 'y is defined by the number of linearly independent columns
of T'z;; or equivalently, it is the dimension of the range of I'y on £2, where ¢2 denotes the
space of square-summable sequences. The following classical result due to Kronecker can
be found in [4]. A proof is included in the Appendix for easy reference.

Theorem 1. (Kronecker)
The infinite matrix 'y in (2) has finite rank if and only if the symbol

- D haz" (3)

is a strictly proper rational function in z; that is,

S0
2 M= 5 )

where P(z) and Q)(z) are relatively prime polynomials in z with degree (P) < degree (Q).
Furthermore, in this situation,

rank(I'y) = degree (Q). (5)

In fact, if 'y has finite rank k, say, then the first k columns of T'y are linearly
independent, and there exist k constants c;,...,cx, such that

2
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k
Ykt = Zci7i+[—la l= 1,2,"': (6)

1=1

where 7; denotes the i*! column of I'yy. Furthermore, the finite square Hankel matrix

hy hy ... hi
Hy = ha ... ... hi_ ’ 7
he ... ... hak_s

which is a finite square truncation of I'y, is nonsingular. For more details, see Lemma 2.1
and its proof in [2] or the Appendix in this report.

THE ARMA MODEL

A sequence {h,}, n =0,1,..., is said to represent an ARMA model if its z-transform
H(z) defined in (1) 1s a proper rational function in z with all its poles lying in the open
unit disc |z| < 1, namely:

=, n_ botbizl 44 byzM
H(z)= hpz™" =
) ; ) 1+a1z7t+---+anzV ®)
b2 A byzP 4 4 h, P(2)
T 2P 4 ag 2P +t+a  Q2)
for arbitrary M, N > 0, where p = max(M,N), bpg4y = -+ = bp =0, any1=---=ap =
degree(f‘) < degree(Q) = p, (9)
and
H(z) is analytic in |z| > 1. (10)

If P(z) and Q(z) have no common factors, we say that the representation (8) of H(z) is
in coprime form. If (8) is in coprime form, then (10) is equivalent to

Q(z) #0for all |z| > 1. (11)
We remerk that (10) is also equivalent to

> |hal < o0. (12)
n=0

In the following, we derive an algorithm to yield the feedback sequence {a,} and feed-

forward scgucice {b,} in (8) from il sequence of unit impulse responses {k,}, assuming
that its z-transform H(z) is known to be an ARMA model.

3
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Algorithm I. (ARMA realization)

(1°) Solve for ay,...,ap in the linear matrix equation:

hi hy ... h, ap :P'H
- Gp-1 +2
h hp+1 P' + P. -0 (13)
hp.ooooinn. hap-1 a hap
(2°) Compute by, ...,b, by matrix-vector multiplication in:
1 0 ......... 0
bo 1 hO
b a hi
= I (14)
L SRR T h
K22 IR ay 1 i

where a,, ... ,a, have been computed in (13).

Remarks: From (7), with k = p, we see that the coefficient matrix of the matrix equation
(13) (which is a finite Hankel matrix) is nonsingular. The coefficient matrix in (14) (which
is a finite Toeplitz matrix) is a lower triangular matrix with umt diagonal.

Proot: Muitiplying @(z) to H(z) in (8), we have

(ho 4+ hiz7 4+ )P+ a2 1 4 + ap) =boz? + -+ b,. (15)
Hence, equating the cocfficients of zP, 2?1 ...,z 1, we have (14); and equating the coef-
ficients of 27',..., 27", we have (13).

THE HANKEL NORM

As mentioned in the Introduction, we must assume for all practical purposes that
H(z) is not a rational function. Hence, we usually start with a sequence {h,} of unit
impulse responses which satisfies )_ |h,| < 0o. In fact, in most situations, we only have
input/output information {u,}/{v,}. In this case, we write

E vme—jmw
Jwy_ m .
H(C )_ Zume_.jmwv (16)
m
and numerically compute the unit impulse responses h,, by applying DFT to the integral
L] 2»
hy = —‘—/ H(e")e!™ duw. (17)
27 Jo
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We do not dwell on this, since it is expected that other more efficient procedures will
be introduced in our forthcoming report [9], but only remark here that any numerical
approximation method for determining {h,} from (17) produces an error, which again

necessarily results in a non-rational model H(z), z = e/%.

Now, as a result of the condition ) |h,| < oo, we have a bounded function H(:) on
the unit circle |z| = 1. Hence, we may write

H(z) = Ha(z) + H,(z), (18)

where

oo 0
Hu(z) = ( > h,,z—"> > haz" (19)

n=-—o00

is called the analytic part of H(z) and

H,(z)= ( i hnz_"> = ihnz_" (20)
s n=1

n=-—00

is called the singular part of H(z). Hence, the Hankel matrix I'y; corresponding to H(z).
as defined in (2), is uniquely determined by the singular part H,(z) of H(z), while the
analytic part Hq(z) of H(z) does not influence I'y at all. Now, under the hypothesis
> |hn] < 0o, which is equivalent to BIBO (bounded input - bounded output) stability, we
may conclude that 'y is a bounded linear operator on the space £ of all square-summable
sequences, with the operator norm defined by

ITu|| = sup{lITaxllez: [Ixllez =1}, (21)

where, for x = (z1,72,...),

[
o
S

oo 1
Ixlip = ( Y. w) . (

\i-.:!

The finiteness of ||I'y|| follows from Nehari’s theorem to be stated below; and it will be
seen that, in fact, we have

o0 1/2 [o o]
(Z lhn|2> STl <) Jhal. (23)
n=} n=1

We will verify (23) after we state Nehari’s theorem; but at this point it should be noted
that ”I"Hr“ is the spectral radius of the operator I'y, or equivalently, the largest singular
value of I'y.

The operator norm of I'yy in (21) is also called the Hankel norm of the function H(z)
and will be denoted by

IH ()l = {ITxll- (24)

Actually, this is not a true norm but only a semi-norm since

5
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IH(2)llr = |1H(z) — g(z)lIr (25)

for any function ¢g(z) € H*. Here and throughout, H* denotes the space nf all bounded
analytic functions in |z} < 1. It is also called a Hardy space. The importance of this
observation is that it provides a motivation of the celebrated theorem due to Nehari [5).

Theorem 2. (Nehari)
Let H(z) be a bounded function defined on the unit circle |z| = 1. Then

IH{=)]r =, 1H(z) = g(2)llLoe(jz1=1)- (26)

We now derive the inequalities in (23). First, note that T'y = I'y,. By (26). with
g(z) = 0, which is certainly in H*, we have

ITall = ITa 0l = 1Ha(2)lir < NHo(2)lILox 21=1) (27)
= sup Z hpz™"
lzl=1 |2

This verifies the upper bound in (23). To verify the lower bound. let e, = (1,0.0....).
which has unit €% norm so that from the definition (21), we have

ICH] 2 ITnerfle (28)

o 1/2
= ||(h1 b2, e = (Z |h,,|2> :

n=1

In the above formulation, we have also established that the Hankel norm lies between the

L>(|z| = 1) and L*(Jz| = 1) norms. Recall that
I fllLeoiz1=1) = sup L£(2)l, (29)

which has already been used in (26) and (27), and that

1 2n . %
g = (5 [ Pas) (30)

Indeed, by the isvmetry between €2 and L?(]z| = 1) we have the lower bound, and by the
application of Nehari's theorem as in (27) we have the upper bound; that is,

| HsllL2¢)21=1) S |Hsllr < |Hsl[Loo()21=1)- (31)

6
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SINGULAR VALUES AND SINGULAR VECTORS

Let T'y be an infinite Hankel matrix as defined in (2). Under the assumption that

|hn| < 00, we have seen that I'y can be considered as a bounded linear operator on 'z
or simplicity, we will call I'y a Hankel operator. Since all Hankel operators are symmetric.
the adjoint of I'yy is its complex conjugate

h2 ks

lh3

In particular, for a sequence of real-valued unit impulse responses, Iy is self-adjoint. In

"’:11 ’:12 ils

Ty = (32)

any case, [’ HF H is non-negative definite and has non-negative e1genvalues s2.s%, ..., with
sy 2 $2 2 --- > 0, which are arranged in nonincreasing order, listing all mult; ,)L occur-

rences. Let lFHI denote the non-negative square-root of FHFH Note that although |T' |
i1s Hermitian, it may not be Hankel; but this is not important in the following discussions.
Clearly, the elgenvalues of [T'y| are sy, s2,... Corresponding to each s,, let X, be an

eigenvector of [['y|; that is, X, # 0, x,, € £2, and
TH|Xn = $pXp. (33)

Let U be an unitary operator on €% such that

'y =U|Ty| (54)
(cf. Ref. 10). Then by defining
n — xn
{ : (35)
T]n - ana
we see that
r n = SnMn
Phbn = sam (36)
PH']n = Snfn-
Indeed, it is clear that
'€, =UlTylén
HE Tul€ (37)
= SnUEn = 3SnMn
and
T1H77n"':fHU£n (38)
=T
= (U Tu)'¢,

= lFNlTén = Irﬁlxn

= SpXpn = Spén.

7
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We will call s, a singular va'ue (or s-number) of 'y and will call the pair (£,,7.) a
singular vector pair (or Schnudt pair) of I'y relative to s,. Let us assume, without loss
of generality, that the eigenvectors {X;,Xz,...} of |Ty| corresponding to the eigenvalues
{s1,$2,...} are orthonormalized, so that the infinite matrix

V= [X1X2...], (39)

with x,, as its n*? column, is a unitary operator in ¢2. Then, by the definition of eigenvalues
and eigenvectors, we have

where

L = diag(s1,2,...,) = 52 (41)
O .

is the diagonal matrix of the singular values of I'yy. Hence, it follows from (34) that
'y =UV)ZV* (42)

where V* is the adjoint (or complex conjugate of the transpose) of V', and both (UV) and
V* are unitary operators. The decomposition (42) is called a sin¢ *~r value decomposition
of I'y. (For finite matrices, see Ref. 11.) Another formulation ot (42) is the so-called
Schmidt series representation

oo

I-‘H = Z snnng:lu (43)

n=1

which follows from (42) and (35); where again, £ denotes the complex conjugate of the

transpose of the vector €., so that n,£2 is a rank-1 operator on ¢2. That is, I'y is the
(strong) limit of the sequence of finite sums

P

) sanati (44)

n=1

(which are rank p operators), as p — 0o. “Strongness” here means convergence in the
operator norm defined in (26). However, although the operators in (44) are finite-rank
operators that approximate I'y, they are not Hankel operators, and consequently, are
useless for our purpose of finding rational models for H(z) (see Theorem 1).

AAK THEORY

Let H(z) and T'y be defined as in (1) and (2) where the sequer. ‘e {k,} of unit impulse
responses is assumed to be in ¢!; that is,

oo
Z |hal| < oo. (45)
n=1

8
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Let s; > s3 > .-- > 0 denote the singular values of I'y with corresponding singular
vector pairs (€1,71),(€2,7m2), .. ., respectively. Since s; is the largest singular value, it is
the spectral radius of I', so that we have s; = ||T'y||. Hence, as a consequence of Nehari’s
theorem (cf. Theorem 2), we have

sy =|[Tall= inf [H(2)~— g(2)|lLe(jz1=1)- (46)
geH

That is, the first singular value s; yields the exact measurement of the error of uniform
approximation on |2| = 1 of H(z) from the Hardy space H*°. That is why Nehari’s result
is considered to be the starting point of the area of H>-control (cf. Ref. 12). To yield
rational models, we introduce the notation:

R, = {gg% deg P(z) < deg@Q(z) <p, @Q(z)#0 for |z|2> 1} (47)

where P,Q are polynomials. That is, R, is the collection of all stable proper rational
functions of degree at most p. Also, let '

H® =H®+R; (48)

denote the collection of all functions f(z) = ¢(2) + r(z) where g(z) € H> and r(z) € R;.
To unify notations, we set

H™ = H®, R:=1{0}. (49)

To pose the approximation problem in terms of operators, let G, denote the collection of
all bounded Hankel operators with rank < p. Hence, Gy consists only of the zero matrix.
By Kronecker’s theorem (cf. Theorem 1) and the equivalence of (11) to the boundedness
of the corresponding Hankel operators, we may identify R, with Gp.

Hence, Nehari’s theorem (cf. Theorem 2) formulated as in (46) can be written as:
s1= inf |Tn—Al= gg},fgo WH(2) — g(2)l| Leo(yz1=1)- (50)

Here, since Gy = {0}, the first equality only says s; = |[I'y|l. The celebrated result of
AAK in (3] is to generalize (50) from p = 0 to an arbitrary positive integer p.

Theorem 3. (AAK)

Let H(z) be any function in L*°(|z| = 1) and p be any non-negative integer. Then

Spt+1 = Aienc{,r ITa — Al = ,é’,’,fgo |H(z) — g(2)|lLeo()z}=1)- (51)

Hence, the (p + 1)* singular value of I'y gives the exact measurement of the distance
in uniform norm on |z| = 1 of H(z) from H;°. In addition, since 'y is a compact operator

under the assumption (45), we have

S,,+1—*0 as p — oo (52)

(cf. Ref. 13). That is, we can approximate H(z) as close as we wish from Hp°. So, if
the Hankel norm defined in (24) is used, then in view of (25), the H*> or analytic part of

9
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the approximant is irrelevant. Thus, by taking the singular part [ ],, we obtain a stable
rational model of H(z2)

To be more specific, we exhibit the formulation of the best Hankel-norm approximant.
The following notations are needed. Let

+1 +1)
0

+1
Epir1 = (u vy Mpar = (P PFD (53)

be a singular vector pair of I'y corresponding to the (p + 1)** singular value sp4; of Ty.
Define the analytic and singular functions:

o0
(p+1) i~
€:+1(2)=2“5p 27
=1

o (54)
Moy (z) = Y vz
=1
respectively, and set
. Mpt1(2)
dp(2) = H(z) — spp1 25 (55)

§:+1(z) .

In the AAK paper [3], it is proved that g,(z) is in Hg® and solves the optimal approximation
problem (51) in the sense that

sp41 = [TH =Ty, || = [|1H(2) = gp(2)ll o (j2)=1)- (56)
As we remarked above, since
T3, =T, ). (57)

where [g,], denotes the singular part of §,, we may conclude that
o1 = IH = plllr = inf_ 1B (2) ~ o(=)lr (59)
P
and this means that the singular part of §,(2), defined by
ﬁp(z) = [gp(2)]s, (59)

provides an optimal stable rational approzimation of H(z) from R, The proof of this result

is very deep; but if H(z) itself is also a rational model, a simpler derivation is accessible.
We will outline this simpler version in the next section. The reason for doing so is that
S.Y. Kung’s model reduction algorithm, which will be discussed in this report, 1s based on
this derivation.

DISCUSSION OF AAK’S THEOREM
We will outline the proof of AAK’s theorem (cf. Theorem 3) for the special case

where H(z) = 3 haz™" has real coefficients and the singular part [H(z)]s = Y oo, hpz™"
of H(z) is a strictly proper rational function, namely:

10
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PM—l(Z)
Qm(z) ’

with degree (Pp-1) < degree (Qm) = M, and Py_1(2), Qm(z) being relatively prime.
Note that H,(z) € R}, since 'y is a bounded Hankel operator.

[H(z)]s = Hy(2) = (60)

Let {\i}M, be the (necessarily non-zero) eigenvalues of the real rank-M Hankel matrix
I'yy. We arrange these eigenvalues in such a way that |A;| = s;; hence,

A} > [A2] 2 --- > [Am] >0, (61)

where s; is the ith singular value of I'y. (Note that since I'y is real, Tuly = FH, and
this glves s? = A2.) Let x; be the eigenvector of I'yy corresponding to A, : = 1,..., M.
Then since s; = |A;| = Ai(sgn A;), we have

Tué&i = sin; (62)
Tuni=sibi’

where £; = X; and n; = (sgn Ai)x;. That is, (x;, (sgn A;)x;) = (&;,7:) is a singular vector
pair of I'y relative to the singular value s; = |A;].

Let p < M, and our goal be to replace H,(z) = Pp—1(2)/Qpm(2) by a rational function
in R;. The notations introduced in (53) and (54) are now used.

Step 1. We claim that

H(Z) = H,(z)¢ +1(z) 5p+1’7p_+1(2) (63)
is analytic in |z] < 1; that is [H(z)], = 0. To see this, first observe that
Sp+17p+1 = Ap1épt1 (64)
so that
= )
- 1) _—i
3p+177,,+1(2) = Ap+1 Z u?’+ z (65)
i=1
Second, it is clear that
b .
Z h,-ug”“)z[—"l (66)

s T8

[« * 2N e o]
+1) _—
hiveoruf ™tz '+Zzht Dz
1 i=1 £=1

-3

1=1

~
]

where h¢ = 0 for £ < 0. Finally, from Tyép+1 = Ap41€p+1, we have

e o)
Y hipeoudtV = 00V =102, (67)

11
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Hence, we may conclude, by applying (64), (65), (66), and (67) consecutively, that

[H(2)ls = [Ho(2)611(2) - 3p+171;+1(2)]a (68)

= [H,(2)&}.(2) - A,+12 Pz

1=1
oo

= iih:-{»l 1u?’+ ) _—i + Zzhl—l+]u£{:§])z' -1 _ Z,\p+lu$p+l)z_,‘

Li=1 £=1 i=1 {=1 =1 s
[ 00 oo
E : +1 -1
= Z h ,+1u?_’+1 )Z'
8

hiu§p+l)zl—i_l:| =0.

s

Step 2. We claim that the function

B(z) = Qm(2)n,3.1(2) (69)
is a polynomial with real coefficients and of degree < M — 1.

It is clear that B(z) has real coefficients. We first observe that since Pas_1(z) and
p_H(z) have only positive powers, we have

[Pm-1(2)€41(2)]s = 0. (70)
Hence, it follows from Step 1 (cf. Eq. (63)) that

[B(2)]s = [QM(‘Z)T];)_+1(Z)]3 (71)

+1 (2) = sp+1 QM(Z)W;H (2)]s

() {Ho(2)€541(2) = spa,51 ()]s

That is, B(z) is analytic and by the definition (69), it must be a polynomial. Now, since

B(z
Jim 2L~ i 7 0) = (12)

we have degree (B) < degree (@Qp), so that the degree of B(z) is at most M — 1.

12
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Step 3. Let B*(z) and Q3(z) be the reciprocal polynomials relative to B(z) and Q m(z),

respectively; that 1s,

B'(z)=z"'B(2) and Q}‘W(z)zzMQN(%). (73)

ST

We claim that the function
Pp_1(2)B*(2) — Ap+1Q3(2)B(2)
Qm(z)
is a polynomial with real coefficients and of degree < M — 1.
Indeed, since Pp_1(2)B*(2) — Ap4+1Q34(2)B(2) is a polynomial of degree < 2M — 1,
we may use partial fractions to write
Prg_1(2)B*(2) — Ap41Q34(2)B(2) _ C(2) + D(z)
Qm(2)Q3(2) Qu(z)  Qm(z2)

for some polynomials C(z) and D(z) of degree < M — 1. However, since @ ps(z) has all its
zeros in |z| < 1, its reciprocal polynomial Q%,(z) has all its zeros in |z| > 1, so that

1 _-m_1 =Z-Moo i
o R R I (7)

C(z) = (74)

(75)

for some qo, q1,... . Hence, if degree (D) < M — 1, we have
D(Z) = {,~Mp(, = i
[QM(z)]a - I:Z D( )ng :Is . (77)
- - —i D(z)
=2"Mp 2 = ——

On the other hand, since @},(2) is analytic in |z| < 1, we have

Gl (78)

Now, in view of Step 1, namely: [I? (2)}]s = 0, we may apply (69) in Step 2 to verify that
[PM-I(z)B*m . A,,+1Q;4<z)B(z)] 4

()03, (2) (79)

so that by combining (77), (78), and (79) in (75), we have D(z) = 0. This verifies (74).

13
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Step 4. Let ﬁ,(z) be defined as in (59). We claim that

= C
Ry(2) = [-B—fz%] . (80)
Indeed, from (74), we have
C(z) _ B(z)/Qum(2) 1)
BoG) T TN ER)]Qy () &)
Here, from the relations (69) and (64), it can be shown that
B(2)/@m(2) | _ Tpt1(2)
A B‘(z)/QXJ(Z)], e L}H(z)} - (52)

Therefore, in view of the definitions in (55) and (59), we have obtained (80).

Step 5. We can now complete the proof of the AAK theorem (cf. Theorem 3), for the
special case of real and finite-rank Hankel operators I'y, by verifying (56), or equivalently:

spt1 =T = Tp | (83)

First, we remark that n,7,,(2) /{;’_,_l(z) is a constant ¢ multiple of a Blaschke product with
le] = 1, so that

77;-4-1(2) =1 (84)
T =1
Ep+1(2) || Lo 12121)
Therefore, from (55) and (31), we have
ITn =T Il = Ta — T, l (85)

R Np+1
= |H - gllr = -“a—!—:”L—”
Pl ¥ 6:.*.] r

77—+1(2)
< L = .
S Sp+1 6:4_1(2) Lo (leim) Sp+1
On the other hand, since
(Ha(2) 5 + _ ] Tor1(2) | 4
a\%) — Rp(s))£p+l(z)]3 = Sp+1 ?:'_ £p+](z) (86)
L p+l(z> . s
= Sp+1 Zi:iE:;£:+l(Z):| = Sp41{Mp41(2)]s
| >P s
= 3P+ln;+l(z)v
14
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we have

Ty g bpt1 = (Th = Tg Yopt1 = sptamp, (87)

so that

fy_ﬁpnp-i*l = Sp+1&p+1- (88)
That is, (sp+1,(€p+1,Mp+1)) 1s also a (singular value, singular vectors) pair of Ty a-
P

Hence, s,41 does not exceed its spectral radius, namely:
spr1 S |Ty_g Il = ITw =Ty |- (89)

Therefore, by combining (85) and (89), we have proved (83).

Remark. From (80), it seems that ﬁ,(z) is a rational function in R},_,. Actually, we .
have now proved that ﬁp(z) is in R, where p < M — 1. This means that only the p zeros

of B*(z) that lie in |z| < 1 are used to yield ﬁ,, The results in Steps 2, 3, and 4 are useful
in the following discussion of Kung’s model reduction algorithm.

KUNG’S MODEL REDUCTION ALGORITHM

Let H,(z) = Ppm_1(2)/Qm(z) be defined as in (60) where Pps_1(z) and Qp(2) are
coprime polynomials with degree (Pp_1) < degree (@m) = M. Let Q%,(z) be the recip-
rocal polynomial relative to Qa(z) as defined in (73). Since H,(z) is in R}, all the M
zeros of Qu(z) lie in |z| < 1, so that all the M zeros of @%,(z) lie in |z| > 1. That is,

Qu(2)

Qu(z) ¥ +qz gzt (90)
is the reciprocal of a finite Blaschke product.
We need the following notations:
i hl h2 hM
HM - h2 PPN “ee hM+l (91)
| hu . e hamy
[ IM qrM -1 Q1
Ky = | IM+ M - @2 (92)
L2M -1 Q2M -2 amMm
0 ... ... 0
) . "
Ha = ! (93)
LO h] ce hM_]

15




d0 0 0

Ka=| & 7 (94)
P (
aqM-1 ... q1 9o

where Hp, Ha are finite Hankel matrices and Ky, Ka are finite Toeplitz matrices. (Note
that the notations in (90) and (7) agree.)

Algorithm II. (Kung)
(1°) Solve the generalized eigenvalue problem

(HM—/\KM)qro (95)
for {\i,q'}, where {q',...,qM} are linearly independent and

Al 2 Az] > - > |Aml. (96)

(2°) For 1 < p < M, perform the matrix-vector multiplication:

l‘p+l = (HA — /\p+1KA)q”+l. (97)
(3°) Set
Pt = (bo,...,ba—1) (98)
qp+l = (aﬂa' ..,(11\,1_1)’
and compute the singular part
5 boeM~Y 4. by,
Ry(s) = [ | (99)

In this computétion, factorize ap + a1z 4+ --- + ap—12M =1 into M — 1 linear factors and
iscard those terms whose roots do not lie in |z| < 1. We note that exactly p linear factors,
counting multiplicities, are retained. Now use partial fraction expansion to determine

Ry(2).)

Proof. Let
Thpmer hmez .. hoym T
HM — hvi2 ... ... hamyr ’ (100)
L ham ham -1
and
[ 2M @M1 - M4 ]
KM _ | 2M+1 im0 ... dM+42 , (101)
Lq3M-1 @GM-2 ... qam ]

16
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where HM is a finite Hankel matrix and K™ a finite Toeplitz matrix. Set

C(z) = bz~ 4o 4 by, (102)
B(z)=aoz™ 1+ ... tam_y’
so that
B*(z)=ay+ajz+---+apy_12M71. (103)

Then it is straightforward to check that the identity (74) in Step 3 in the proof of AAK’s
theorem is equivalent to the matrix system

C by T
by -y
HA KA PR
ao ao 0
Hy © ] T A | KM : =1 : |- (104)
HM apM-1 M aM—lJ 0
0
. 0]

Also, (104) is equivalent to

[Ha — /\p+1KA]q(p+l) = plp+1)
[Hyu — Aps1Kumlq®* =0 (105)
[HM — ,\p“KM]q(pH) =0

where the notations in (98) are used. The second equation in (105) is Step (1°) in Algo-
rithm II, while the first equation in (105) is Step (2°) in the algorithm. Note that the third
equation in (105) is a consequence of the second equation by the Caley-Hamilton theorem

in matrix theory. Now, the result I’ip(z) computed in Step (3°) of the algorithm agrees
with R,(z) in (80); and hence, by AAK’s theorem (cf. argument in Step 5 in the above
section), we may conclude that R,(z) satisfies (83).

REFORMULATION OF OPTIMAL HANKEL-NORM RATIONAL MODEL

We have seen that Toeplitz matrices also occur in the computation of the rational
model R,(2) in Kung'’s algorithm. In fact, a Toeplitz matrix associated with the transfer
function H(z) can be used to describe R,(z). Let

17
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0 hy hy hy
_{o 0 m
TH=10 0 o (106)

...................

be an upper triangular infinite Toeplitz matrix with zero main diagonal. As in (61), let
{A:}M, denote the (necessarily non-zero) eigenvalues of the rank-M Hankel operator I'y
such that |\;] = s; is the i*® singular value of T'y, ¢ = 1,..., M. As before, let

=& =, u?,..) (107)

denote an eigenvector of I'y corresponding to the eigenvalue Ai, 50 that (&;,7n:), with
= (sgn A;)xXi, is a singular vector pair of 'y correspondmg to the singular value s; = ||

(cf. Eq. (62)). Also, let §,(z) be as in (55) and R,(z) = [d,(z)], be the optimal solution

in best Hankel-norm approximation of H(z) from R;. Then we have the following result.

Theorem 4. Let H(z) be a transfer function with real coefficients such that its singular
part H,(z) is given as 1n (60). Then

= _ (1 z, 2 ) THX +1
RP(Z) [ (1 Z Z ) xp:] " (108)

Proof. From the equation I'yx,41 = Apy1X,41, we have
o0
Y e u® = 200V =12, (109)

and hence, by (65), it follows that

(o o} [ o] oo
Sp+17p41(2) = Apta ZHEPH)Z_' = Z (Z h,+¢_1u$”+l)) . (110)

=1 =1 \{=1

This yields:

H (z)£:+](z) — Sp+17p41(2) (111)
(Z hiz™ ) (Z u(p+1)zt-1) _ i (i h.+z_1u$”+ )) —i
i=1 =1 =1 \{=1
Z ( Z hl—l g’_’;l)) 2!
i=1 l—:+l

=(1,2,2%,...) - TyXp41.
Since Epﬂ(z) =(1,2,2%,...) - Xp41, we have

18
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Mpa1(2)  (1,2,2%,..) - TyXyy,
{;:‘,1(2) (1’23227---)'xp+1

so that by (59) and (55), which was proved by AAK [3] in general and in this report for
our special case, we have obtained (108).

H,(Z) — Sp+1

k]

TRUNCATED HANKEL OPERATORS

To apply Kung’s algorithm, it is essential to start with an ARMA model. However. as
we mentioned before, in all practical purposes in underwater acoustic signal processing. the
sequence {hn} of unit impulse responses which may be computed from input/output mea-
surements (cf. Eqs. (16) and (17), for instance), is both physically and numerically noisy.
Hence, the measured transfer tunction H(z) cannot be ARMA or the Hankel operator Ty
has infinite rank. In a recent work [7], the truncated (infinite) Hankel operators

Chy hy ... h, 0]
ha
Iy = . (112)
h.,, |
o ol
are introduced and optimal Hankel-norm approximants ﬁ;}(z) of
H.(z) = i hiz™! (113)

are used to replace the optimal Hankel-norm approximant ﬁp(z) of

H(z)= Y hiz™" (114)

I=—o00

Recall that this means:

(n) _ pn — 3 >
spir = IHn(z) = Ry(@)ln = | ind_ 1Hoz) ~ Rl

~ , (115)

spr1 = [|H(2) = RBp(2)lir = | inf [lH(2) — R(2)lIr

where 81") > 3(2") > --- are the singular values of 'y, = I'};. It is at least intuitively clear
that

S£1)‘——’SP+] as n — 0o; (116)

19
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and in [8], we have proved much more.

Theorem 5. For each p, there exists a positive constant C,, such that

oC

IR} (=) = Rp(2)l| oo ji=1) Scp{ L (117)

k=n+1

1
2

oo 1/2 oo oo
+(n+1) ( Z Ihk|2) + Z Z|hj|2
k=n+2 \j=k

k=n+1 =n+

Hence, if {kn} decays to zero very rapidly (as is the case in most underwater acoustic
experiments), we know that fi;‘(z) converges uniformly on |z| = 1 very rapidly to the
optimal Hankel-norm rational model ﬁp(:). In the next section, we will give an efficient
algorithm for computing ﬁ’;‘(:).

ALGORITHM FOR OPTIMAL RATIONAL MODEL

Let {h,}, n =1,2,..., be a sequence of unit impulse responses that satisfies

Z|h,,| < . (118}
n=]

(Note that H(z) = Y hnz~" is not necessarily a rational model.) Given a tolerance = > 0.
we now give an algorithm for computing a stable (strictly proper) rational function Rp(z)
such that

lH(z) = Rp(2)|Ir <. (119)

The degree p will be chosen to be the smallest possible, under the limitation of this method.

Algorithm IIL

(1°) Choose an ey, 0 <€) <€ (eg. €1 = %e), and the smallest positive integer M.
such that

Y hal <, (120)
n=M,+1
where hag, # 0.
(2°) Find the singular values
s> > 26l >0 (121)
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of the finite Hankel matrix

hy bk ha,
(1) ha
= | , (122)
O
hu,

and choose the smallest positive integer p; < M, such that

s <e—e. (123)

(One can find the eigenvalues of I“g) and then take their absolute values to determine the
singular values.)

(3°) If p, does not exist (i.e., if s(Al,)l > € —€y), return to (1°) with ¢, replaced by

€1

and M, replaced by M,, so chosen that
= €
Z |h,,|552:—21 (125)
n=Ma+1

and h}\12 §é 0]\’[2 > ]\Jl
Repeat (2°) by finding the singular values

P>V > 280 >0 (126)
of the Hankel matrix
hl h2 cee h1w2
(2) ha .
FH = . - (12[ )
hm, O
and choosing the smallest p; < M, such that
s Se—e (128)

(4°) If this fails (ie. if s > € —€3), repeat (3°) with

£
€3 = -2-2-, (129)
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etc. Suppose that the first time this procedure succeeds is at the k'® iteration. That is, k

is the smallest integer such that

(k) _ 1
SM, SE—E"_E—_Q—I:_—TEI’

where .
RPN

are the singular values of the My-dimensional square Hankel matrix

b he ... B,
o _ hf - ’
A ®
with hpy, # 0, and
Z |hn| < ex = 21:1—151'
n=My+1

Let px Le the smallest integer such that s,(,’:) < € — €, and set

p=pr— 1
so that
(k) (k) k
0<spm, Sspin = s;k) se- ok—1°1"
(5°) Compute the eigenvalue-eigenvector pair
(A}H’l ’ qp+1)
(k) (k)
of I'y’, where [Ap41| = s,
(6°) Perform the matrix-vector multiplication
0o ... ... 0
P : hy qp+1'
0 hy ... humo—1

(7°) Write:

o+ = (bo,...,ba,-1)
q**! = (ag, ..,am,-1)

22
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(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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and compute the singular part

Mi-1 o .
Ry(s) = [t

139
lao +ajz+ - +apm,—1zM:1 (139)

8

by using partial fractions, retaining only the p poles in |z| < 1, counting multiplicities.
Then R,(z) € R, and satisfies

1H(z) — Rp(2)llr < e. (140)

Proof. We first remark that det I‘(}f) = (=1)M: h%: # 0 so that all the singular values

s(-k), t = 1,..., My, are positive (nonzero). From a well-known result in operator theory
p p
(cf. [13]), we have

S <y — T 141
182354,"3’ s; | < |ITuw —=TH'|l. (141)

On the other hand, it follows from the definition of I‘(}f) and the second inequality in (23)
that

oo

ITh =TS S |hal. (142)
n=M;+1

Hence, by combining (141), (142), and (133), we obtain

(&) 1

max IS"—S' 'IS'Z—k—__Tel. (143)

1<i< M,

Now, since {h,} satisfies (118), we have s,, — 0 by (52); so that in view of (143) (where M;
necessarily tends to infinity, as k — 00), it follows that (130) is satisfied for all sufficiently
large values of k. This shows that the iteration procedure (1°)-(4°) converges.

Next, from the definition of I‘(,;) in (132), we note that the corresponding rational
symbol of I“(,;) is

M, -
i hZMelg4p P(z
Hk(z)=2h.-z = o Me _ ngi, (144)
1=1

where degree (P) < degree (Q) = My and Q(z) = zM*. Since the reciprocal polynomial
of Q(z) is Q*(z) = 1, we have

Q*(2) —M,
—_—t =2 . 145
Q) te
Hence, using the notations from (92) and (94) with M replaced by My, we have:
1 O
Kum, = Ka =[0]. (146)
O 1
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Also, again from the definition of I“(I;) in (132), using the notations from (91) and (93)
with M = Mj, we have:

Hy, =Ty (147)
and
0 ... ... 0
: - h
Ha=1| . (148)
0 hl e th—l

This yields

{(HM.. - MKm)a=Tx'a-Aq (149)
(Ha — AKaA)q = Hagq.
Hence, Step (1°) in Kung’s algorithm (i.e. Algorithm II) is equivalent to
T e+ = Apngt, (150)
and Step (2°) in Kung’s algorithm (i.e. Algorithm II) is equivalent to
rP*! = HaqPtl. (151)

Since (150) is the same as Step (5°) and 151; is the same as Step (6°) in Algorithm 111,
we have proved that R,(z), as defined in (139), satisfies

IR, (2) — Hi(2)lIr = s531, (152)

where Hy(z) is defined in (144). Hence, by applying the triangle inequality and the infor-
mation from (142), (133), (152), and (135) consecutively, we have

|H(z) = Bp(z)llr = [[Tu — Tg, |l (153)
k k
<|ITw =T ||+ Iy’ — T, |
< Y Ihal 4 I1Ry(2) = Hi(2)]r
n=M;+1
PO ()
= 5km1f1 T Spt

1 1
Sgmat (5 - 5::1'51) =€
This establishes (140).

Remarks. Algorithm III can be easily adapted and modified to produce a possibly lower
degree rational model R,(z) that satisfies the design criterion (119). In fact, as a conse-
quence of Theorem 5, we can theoretically obtain the lowest degree optimal Hankel-norm
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rational model ﬁp(z) in the limiting case. One suggestion is to repeat this algorithm for
various values of €;, such that

14
€1="L‘€, £=1,...,L—1, (154)
for a suitably large integer L. As to the modification of the algorithm itself, one may wish
to try various values of ¢;, 1 = 2,3,...,k, instead of €5 = %61,63 = %62 = -2-15-61,. e €k =

leky = zirer as suggested in (124), (129), and (130). The only restriction is that
€1 > €2 > €3 > +++ > €. The smaller the values of ¢4 — €¢—1, £ = 2,...,k, chosen,
the better the chance is to find the lowest degree rational model R,(z). Of course, more
computing time is required.

We also remark that although the Hankel-norm specification in (119) is not as desirable
as the supremum (or uniform) norm specification, it is very close to it, 1n view of Nehari’s
theorem (i.e. Theorem 2), since the only thing that can go wrong is an H* (or analytic)
additive factor which only contributes to noncausal information. In addition, the Hankel-

norm specification is more desirable than the L? norm (or RMS) specification, since it
follows from (31) that

1H(2) — Rp(2)||22 < |H(2) — Rp(2)lIr, (155)

where L2 = L?(|z| = 1) and H(z) is assumed to be causal, in the sense that H(z) = H,(z)
or

H(z) = f: hnz™, (156)
n=]

where {hn} satisfies (118). Hence, as a consequence of (154), if R,(z) satisfies the design
criterion ||H(z) — Rp(2)||r < €, it also satisfies the design criterion ||H(z) — Rp(z)||L2 <e.
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APPENDIX
Since it is important to be able to relate a rational model
> _ P(z)
H(z)= hnz "= ’ (157)
(=2 Q)
where P(z) and @(z) are coprime polynomials satisfying
degree(P) < degree(Q) = M, (158)
with the infinite Hankel matrix
h] h2 h3
Ty= |2 hs (159)

h3 ..' ..' 9

we include in this Appendix a proof of Kronecker’s theorem given as Thcorem 1 on page
2. To be consistent with the notation in (6), let
Yi = (his hisa,...) (160)

denote the it? column vector of I'yy. We also need the notation

h; coe hipm—
Hy=| - : (161)
hiym—1 ... higam—2
for the M-dimensional cofactors of I'y with leading entry h;. Then

HYy =Hy (162)

is the principle cofactor of I'y of dimension M introduced in (7) and (91). We have the
following preliminary result.

Lemma 1. The infinite Hankel matrix I'y has finite rank = k if and only if the first
k column vectors 7;,...,vk of 'y are linearly independent and there exist k numbers

C1,...,Ck such that
k

Vet = Z Civige—1, €=1,2,... . (163)

1=1

Furthermore, if rank 'y = k < oo, then the principal cofactor H} = Hj is a nonsingular
square matrix.

Proof. By definition, rank I'yy < oo if and only if I'y; has only a finite number of linearly
independent columns. Suppose rank 'y < oco. Let 74;,...,7, be linearly dependent; and
let k be the largest integer, 1 < k < r, such that 4,,...,vx are linearly independent. Then

since 7y,...,Yk+1 are linearly dependent, there exist constants c,,...,ck such that
k
Ve+1 = }:Cn. : (164)

=1
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This is (163) for £ = 1. Note that both sides of (164) are infinite dimensional vectors. By
deleting the first (¢ — 1) entries of these vectors, (164) becomes (163) for £ = 2,3,... .
That is, each i** column of 'y, for ¢ > k, is a linear combination of its previous k
columns; and hence, by using (163) repeatedly, each «,, ¢ > k, is a linear combination of
Y1, ---57k- So, for finite rank I'y, its rank is given by the largest k for which v;,...,7
are linearly independent. Of course, rank I'y = oo if and only if such a k does not exist.
This proves the first statement in the lemma. Now, suppose that rank I'y = k < oc.
By repeated applications of (163), it is clear that every minor det Hy, ¢ = 2,3,...,is a
constant multiple of the principle minor det Hi. Recall that if rank I'y = k, then 'y has

some k dimensional cofactor with nonzero determinant, (i.e. det Hi # 0 for some 1), so
that det Hx = det H} # 0.

We are now ready to prove Theorem 1. Suppose that H(z) in (157) satisfies (158).
Then by dividing both the numerator and denominator by the leading coefficient of Q(z
we may write

k)

P(z)=b2M - + by
M M1 (165)
Qz)=z"+a;2" 7 +---t+apm
so that (157) is equivalent to
(hiz7 ' 4 hoz 24 )Mt a2 T4 day) =b2M 4 p by (166)
Hence, by equating the coefficients of zM~1, ..., 2,1, we have
bl = hl
by = hy + hay : (167)
b = hpm + hp—yay + -+ hjap
and by equating the coefficients of z7!,2z72,..., we have
( M
hym4r + E aihm—iy1 =0
=1
M .
\ haraz + 3 aibizs =0 (16%)
=1
| ot ittt et
Now, if we define
Ci = —AM—i41, i=1,...,M, (169)
then we observe that (168) is equivalent to
M
TM+1 = Z —GiTM—i+1 (170)

=1
M

= Z Civi
i=1
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which, by the same argument as the proof of Lemma 1, yields

M
TM4et = ZC,")’,‘.H_I, £=1,2,.... (171)

=1

Since P(z) and Q(z) are coprime and the leading coefficient of Q%) is normalized to be
1, the set of coeflicients {a;}, and hence {c;}, in (170) is unique. That is, ;,...,ym are
linearly independent. Hence, by Lemma 1, rank I'yy = M.

Conversely, suppose that rank I'y;y = M. Then by Lemma 1, we can find coefficients
¢y,...,CcM, such that (171) holds. Hence, defining ay,...,apm and by,...,bsm by (169) and
(167), respectively, we have both 5167 and (168), which yields (166); or equivalently, we
have H(z) = P(zg'/ Q(z) by using (165) to define P(z) and Q(z}). The linear independence
of v1,...,vM is equivalent to the uniqueness of {a;} and {b;}, ¢ = 1,..., M, which, in
turn, implies that P(z) and Q(z) are coprime.
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